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Abstract

Background

Intelligent decision support systems (IDSS) have been applied to tasks of disease manage-

ment. Deep neural networks (DNNs) are artificial intelligent techniques to achieve high

modeling power. The application of DNNs to large-scale data for estimating stroke risk

needs to be assessed and validated. This study aims to apply a DNN for deriving a stroke

predictive model using a big electronic health record database.

Methods and results

The Taiwan National Health Insurance Research Database was used to conduct a retro-

spective population-based study. The database was divided into one development dataset

for model training (~70% of total patients for training and ~10% for parameter tuning) and

two testing datasets (each ~10%). A total of 11,192,916 claim records from 840,487 patients

were used. The primary outcome was defined as any ischemic stroke in inpatient records

within 3 years after study enrollment. The DNN was evaluated using the area under the

receiver operating characteristic curve (AUC or c-statistic). The development dataset

included 672,214 patients (a total of 8,952,000 records) of whom 2,060 patients had stroke

events. The mean age of the population was 35.5±20.2 years, with 48.5% men. The model

achieved AUC values of 0.920 (95% confidence interval [CI], 0.908–0.932) in testing dataset

1 and 0.925 (95% CI, 0.914–0.937) in testing dataset 2. Under a high sensitivity operating

point, the sensitivity and specificity were 92.5% and 79.8% for testing dataset 1; 91.8% and

79.9% for testing dataset 2. Under a high specificity operating point, the sensitivity and spec-

ificity were 80.3% and 87.5% for testing dataset 1; 83.7% and 87.5% for testing dataset 2.
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The DNN model maintained high predictability 5 years after being developed. The model

achieved similar performance to other clinical risk assessment scores.

Conclusions

Using a DNN algorithm on this large electronic health record database is capable of obtain-

ing a high performing model for assessment of ischemic stroke risk. Further research is

needed to determine whether such a DNN-based IDSS could lead to an improvement in clin-

ical practice.

Introduction

Globally, approximately 6.5 million stroke deaths happen each year–making stroke the sec-

ond-leading cause of death and thus an important public health issue.[1] The mortality and

disability associated with stroke significantly impact lives of patients and their families. Devel-

oping predictive risk assessment is essential in continuously improving stroke prevention by

providing healthcare professionals reliable pre-screening analytics.[2,3] In fact, many existing

clinical guidelines recommend the use of stroke risk assessment tools, e.g., the Framingham[4]

and QRISK[5] scoring systems, to identify patients at a high risk of stroke.[6–8] However,

large-scale deployment of these questionnaire-based assessments in outpatient departments or

clinics is inefficient and impractical. This draw-back is especially evident when scaling up the

assessment effort in places with large volumes of primary care, or for the general population. A

scalable and reliable automated stroke risk assessment system could offer clinical decision sup-

port instruments for healthcare professionals and further benefit societal welfare.

Intelligent decision support systems (IDSS),[9–12] i.e., those developed based on artificial

intelligence (AI) techniques (such as machine learning algorithms[13–15]), have demonstrated

great achievement in a variety of clinical tasks in recent years.[16–18] In fact, as the volume of

electronic data in healthcare system grows, these techniques have been successfully applied in

disease identification and outcome prediction,[19–21] e.g., Parkinson’s disease,[22] heart fail-

ure,[23] in-hospital mortality,[24] and coronary artery disease.[25,26] Among a wealth of

machine learning methods, deep learning techniques have recently produced results surpass-

ing the ability of trained human experts in tasks such as recognition of diabetic retinopathy

[27–29] and melanoma skin lesions,[30] and detection of tumor metastases.[31] Deep learning

is formulated as a mathematical neural network architecture consisting of multiple hidden lay-

ers with non-linear activation.[32] It is capable of modeling complex non-linear relationships

between predictive variables without prior statistical assumptions.[33] Moreover, when given

a sufficiently large amount of data, the DNN may outperform conventional statistical methods

due to its non-linear learning structure.[15,32,34]

The electronic health record (EHR), by nature, is collected non-obtrusively in a large-scale

long-term follow-up manner.[11] These properties along with the inclusion of diverse aspects

of patients’ health-related information make EHR a valuable data source for constructing auto-

mated risk assessment systems with deep learning techniques.[35] In fact, in our recent work,

we have demonstrated that DNN can achieve a higher stroke occurrence predictive accuracy

compared to other conventional machine learning methods when trained on the EHR data-

base.[34] However, it is not known whether a DNN based IDSS would be more accurate than

currently used clinical stroke risk assessment scores. Furthermore, the stability of the DNN

model needs to be additionally validated across different time periods in order to fulfill real-
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world clinical practice requirements. The purpose of the present study is to investigate whether

the DNN-based stroke predictive model derived from a large EHR database meets real world

clinical practice requirements.

Materials and methods

Research database

The National Health Insurance program has been implemented in Taiwan since 1995 and cov-

ers more than 99% of the island’s population. The National Health Research Institute (NHRI)

in Taiwan has established the database, National Health Insurance Research Database

(NHIRD), from the claims data of the National Health Insurance program. We conducted a

large population-based cohort study with a systematic sampling of patient data in the NHIRD.

This random sample of patients (from January 1, 2000 to December 31, 2011 with a total of 1

million unique subjects) has been confirmed by the NHRI to be representative of the general

population in Taiwan. The NHRI further made data available at the individual level in an

anonymous format to protect the privacy of patients. The details of the NHIRD were described

previously,[36] and this EHR database has been used for several important clinical studies.

[37,38] The database can be accessed from the NHRI (https://nhird.nhri.org.tw/) or the Health

and Welfare Data Science Center of Ministry of Health and Welfare, Taiwan. Ethics review

was approved by the Institutional Review Board of Taichung Veterans General Hospital.

Study population

In this study, we developed a predictive model to estimate 3 year risk of ischemic stroke in the

general population. Patients aged 0 to 99 years who visited any outpatient departments or clin-

ics between 1 January and 31 December in 2003 were identified. Patients were excluded if they

had any pre-existing stroke records (International Classification of Diseases, Tenth Revision,

Clinical Modification, [ICD-10-CM] code: I60~I69) at cohort entry. Following the exclusion

process, our final dataset contained a total of 11,192,916 claim records from 840,487 patients.

In order to develop and evaluate the DNN-based IDSS, these data were further assigned into

one development dataset (including ~70% of total patients used for training algorithm, and

~10% for parameter tuning) and two testing datasets (each had ~10% of total patients). We uti-

lized data from outpatient departments (within 3 years prior to the cohort entry) to generate

predictive variables (features) and data from inpatient departments (within 3 years after the

cohort entry) to retrieve target outcomes.

Feature engineering and stroke event definition

In our previous study, we have established a feature engineering method to extract health-

related information from the NHIRD database.[34,39] In brief, we gathered variables from

outpatient database records within 3 years before study enrollment (containing information

from 2000 to 2003); these variables included demographic data, healthcare costs and utiliza-

tion, disease diagnoses, and medication use. Diagnostic records were re-classified by the first 3

characters of ICD-10-CM codes (for example, I10 for essential hypertension). While the origi-

nal NHIRD database used ICD-9-CM codes to record diagnoses of diseases, we converted

ICD-9-CM codes to ICD-10-CM codes according to the code-converting sheet provided by

the Taiwan National Health Insurance Bureau. The records of medications were re-classified

by the first 5 characters of ATC codes (for example, C10AA for statins). In order to addition-

ally capture temporal information, we utilized the time stamp information in the process of

variable computing (examples of the derived variables: mean and standard deviation [SD] of

IDSS for stroke risk assessment
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total insurance payments within 1 year before enrollment). Finally, we extracted a total of

7,932 predictive variables from the database.

The primary outcome of this study was defined as any ischemic stroke (ICD-10-CM code:

I63, equivalent to ICD-9-CM code: 433.01, 433.11, 433.21, 433.31, 433.81, 433.91, 434.01,

434.11, 434.91) recorded in the inpatient database within 3 years after patients being enrolled

(from 2003 to 2006). This definition of ischemic stroke has been validated and suggested for

NHIRD studies by Hsieh et al.[40] The positive predictive value and sensitivity for ischemic

stroke detection were expected to be higher than 88% and 97% under this definition.[40] For

further sensitivity analyses, we examined the developed algorithm with different outcome defi-

nitions (S1 Table). Extended 8-year outcome records were also retrieved from the database

(from 2003 to 2011) for further stability testing of the predictive algorithm (see Fig 1).

Development of the algorithm

The core mechanism of DNN is to train a multi-layered feedforward neural network to per-

form classifications.[32] The structure of our DNN model was composed of five fully con-

nected layers, including an input layer, 3 hidden layers (each layer had 300 neurons), and an

output layer (with only one neuron using a sigmoid function for binary stroke prediction).

Fig 1. The 3 year and 8 year stroke rate of patients in the 5 risk categories in the testing datasets.

https://doi.org/10.1371/journal.pone.0213007.g001
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Hyperbolic tangent was used as the activation function and stochastic gradient descent was

used as the optimization algorithm. We used part of the development dataset (~70% of total

patients) to train the network weights using the method of back-propagation with cross

entropy as the loss function.

In order to speed up the training process, we additionally utilized univariate Pearson corre-

lation (a common data-distilled feature selection method[41,42] for selecting the most infor-

mative variables and reducing the number of input variables) to select the most relevant

clinical factors from 7,932 variables and applied min-max normalization (rescaling every input

variable to a range between 0 and 1) in order to train the neural network with numerical stabil-

ity.[43] In the development of a machine learning or DNN model, selection of the best number

of variables is usually an empirical decision, which depends on the purposes the model needs

to achieve. Therefore, we performed experiments to determine the number of variables (S1

Fig). With more variables, performance of DNN models increased. However, there was only

slight improvement (marginal benefit) after including more than 300 variables. Finally, we

selected the most relevant 300 variables (S2 Table) for developing the stroke predictive model

in this study. The use of 300 features represents a reasonable compromise between rapid com-

puting and optimized prediction accuracy over time.

Because there are many more non-stroke cases than stroke cases, we randomly under-sam-

pled the non-stroke cases in the development dataset in order to guarantee an almost identical

class distribution between stroke and non-stroke cases. If no proper under-sampling is carried

out, the training of a DNN model would converge to a solution categorizing every patient into

the stroke class and ignoring the non-stroke class. Random under-sampling is often done to

manage the class imbalance problem in data mining and machine learning.[44,45] Platt cali-

bration (also known as Platt scaling), a method for better calibrating the probabilities of a

machine learning model by fitting a logistic transformation to the model’s outputs, was applied

for estimating stroke risk accurately.[46] Another part of the development dataset (~10% of

total patients) was used to adjust the various hyper-parameters of the neural network (such as

the early stopping criterion). The algorithm was implemented using the Keras (2015, GitHub)

toolbox.

Evaluations of the algorithm and sub-sampling experiments

Performance of the DNN stroke prediction model was examined on two testing datasets (each

~10% of total patients) based on person-level data. The metric used was the area under the

receiver operating characteristic curve (AUC or c-statistic) values. The output layer of the

DNN generates the probability of future stroke occurrence. Receiver operating characteristic

curves were plotted by varying the operating threshold, i.e., that probability above which a

patient is labeled “at risk of stroke”. Two operating cut points for the algorithm were selected

from the development dataset. The high sensitivity operating cut point approximated a speci-

ficity of 80% and allowed a high sensitivity for disease screening use. The high specificity oper-

ating cut point corresponded to a sensitivity of 80% and allowed a high specificity for detecting

high stroke risk patients that is suitable for preventive interventions. The receiver operating

characteristic curve plots, AUC and 95% confidence intervals (CI) were computed using the

Scikit-learn packages.[47] Model calibration was evaluated using calibration plots and the

Hosmer-Lemeshow test.[48]

In order to assess whether the DNN model developed using data from 2003 would degrade

over time, we tested the model at various time periods (2003, 2004, 2005, 2006, 2007 and 2008)

on the two testing datasets. We also conducted sub-sampling experiments to understand the

relationship between different amounts of training data and the model performance. The

IDSS for stroke risk assessment
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development dataset was divided into 8 separate sub-datasets (each included around 1 million

records). We then iteratively added these sub-datasets into the DNN training process (S2 Fig).

Performance of these models was also examined on the two testing datasets.

Results

Population characteristics

A total of 840,487 patients were enrolled in this study, of whom 672,214 were in the develop-

ment dataset, 84,342 were in testing dataset 1 and 83,931 were in testing dataset 2. The devel-

opment dataset included a total of 8,952,000 records. Testing dataset 1 and testing dataset 2

consisted of 1,118,320 records and 1,122,596 records, respectively. Patients’ demographics and

characteristics of these datasets are summarized in Table 1. Each patient visited outpatient

departments a median of 11 times (interquartile range, 5–20) in 2003. Within the 3 year period

after enrollment, 2,060 patients in the development dataset had at least one stroke event. The

mean age of the development dataset population was 35.5±20.2 years, with 48.5% men.

Performance of the algorithm

Fig 2 shows performance of the algorithm in predicting 3 year stroke occurrence. The trained

DNN model achieved AUC values of 0.920 (95% CI, 0.908–0.932) and 0.925 (95% CI, 0.914–

Table 1. Characteristics of development and testing datasets.

Characteristics Development

dataset

Testing

dataset 1

Testing

dataset 2

No. of records 8,952,000 1,118,320 1,122,596

No. of records with stroke events 43,911 4,578 5,000

Patient demographics

No. of patients 672,214 84,342 83,931

No. of patients with stroke events 2,060 239 245

No. of OPD visits in 2003, median (IQR) 11 (5–20) 11 (5–20) 11 (5–20)

Men, No. (%) 326,337 (48.5) 41,078 (48.7) 40,916 (48.7)

Age in years, mean (SD) 35.5 (20.2) 35.5 (20.2) 35.5 (20.3)

Co-morbidity, No. (%)

Hypertension 79,696 (11.9) 9,968 (11.8) 9,944 (11.8)

Hyperlipidemia 50,929 (7.6) 6,395 (7.6) 6,288 (7.5)

Diabetes mellitus 38,635 (5.7) 5,017 (5.9) 4,780 (5.7)

Ischemic heart disease 32,126 (4.8) 3,975 (4.7) 3,973 (4.7)

Atrial fibrillation 1,958 (0.3) 235 (0.3) 224 (0.3)

Heart failure 7,959 (1.2) 989 (1.2) 1,020 (1.2)

Medication use, No. (%)

Antiplatelet agents 75,252 (11.2) 9,425 (11.2) 9,311 (11.1)

Renin angiotensin system inhibitors 50,885 (7.6) 6,438 (7.6) 6,306 (7.5)

Beta blockers 87,051 (12.9) 11,019 (13.1) 10,966 (13.1)

Calcium channel blockers 67,373 (10.0) 8,438 (10.0) 8,268 (9.9)

Other antihypertensive drugs 70,876 (10.5) 9,023 (10.7) 8,844 (10.5)

Statins 18,567 (2.8) 2,382 (2.8) 2,312 (2.8)

Oral hypoglycemic agents 28,149 (4.2) 3,641 (4.3) 3,415 (4.1)

Insulins 4,746 (0.7) 637 (0.8) 592 (0.7)

OPD = outpatient department; IQR = interquartile range; SD = standard deviation.

https://doi.org/10.1371/journal.pone.0213007.t001

IDSS for stroke risk assessment

PLOS ONE | https://doi.org/10.1371/journal.pone.0213007 March 13, 2019 6 / 16

https://doi.org/10.1371/journal.pone.0213007.t001
https://doi.org/10.1371/journal.pone.0213007


0.937) in testing datasets 1 and 2. Under the high sensitivity operating point (with cut point of

calibrated model output probability 0.001), the sensitivity and specificity were 92.5% and

79.8% in testing dataset 1; 91.8% and 79.9% in testing dataset 2. Under the high specificity

operating point (with cut point of calibrated probability 0.004), the algorithm obtained sensi-

tivity and specificity of 80.3% and 87.5% in testing dataset 1; 83.7% and 87.5% in testing dataset

2. These findings corresponded to a negative predictive value of 99.97% for both testing dataset

1 and 2. The algorithm showed similar performance in both the male and the female popula-

tion (S3 Fig). These results demonstrate that the DNN model can reliably estimate stroke risk

using the health-related information in the EHR data. After applying Platt calibration to the

DNN model outputs, the Hosmer-Lemeshow test (p-value for the original DNN model:

<0.001, p-value for the model with Platt calibration: 0.039) and calibration curves showed an

improvement of model calibration without altering AUC values (S4 Fig).

Stroke rate in each risk category

As mentioned above, the DNN estimates stroke risk probability. We classified these continu-

ous values into 5 risk categories. Fig 1 shows the 3 year and 8 year stroke rate of patients in

each risk category in the designated testing datasets. The overall 3 year and 8 year stroke inci-

dence rates of this population are 0.29% and 1.00%. When using the high sensitivity operating

point (sensitivity 92.2%, specificity 79.9%), those who were classified as low risk (category 1,

with calibrated probabilities 0–0.001) had a 3 year stroke rate of 0.03% and an 8 year stroke

rate of 0.13%. When using the high specificity operating point (sensitivity 82.0%, specificity

87.5%), those who were classified as high risk (categories 3 to 5, with calibrated probabilities

0.004–0.013, 0.013–0.039, 0.039–0.066, respectively) had 3 year stroke rates of 0.93% to 3.55%

and 8 year stroke rates of 3.96% to 9.60%. S3 Table showed the characteristics of patients in

each risk category. Patients in higher risk categories were older and had a higher percentage of

men, co-morbidities and medication use histories than those in lower risk categories (all with

p<0.01). For assessing the diagnosis reliability, we tested the established model under different

Fig 2. Performance of the deep learning model for predicting 3 year stroke occurrence in (A) testing dataset 1 and (B) testing dataset 2.

https://doi.org/10.1371/journal.pone.0213007.g002
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definitions of stroke events. Performance of the DNN did not change much after adjusting for

stroke event definition (S1 Table).

Sensitivity analyses

Additional sensitivity analyses were conducted in different testing time periods. Fig 3 and S5

Fig summarized performance of the 3 year stroke prediction algorithm (developed with 2003

data) when tested at different testing time periods (2003, 2004, 2005, 2006, 2007 and 2008).

Performance of the model decreased only slightly (AUC values went from 0.923 to 0.909, spec-

ificity values went from 0.875 to 0.859 under the high specificity operating point, and sensitiv-

ity values went from 0.921 to 0.919 under the high sensitivity operating point). These results

showed that the DNN model maintained high predictive ability 5 years after being developed.

In another sub-sampling experiment, the effects on the quantity of development data upon

algorithm performance were examined, i.e., predictive models were trained with varying num-

bers of records (S2 Fig). AUC values of these different models increased as we increased the

development data amount, and plateaued after the data amount exceeded 3 million records

(approximate 250,000 individuals).

Comparing to other stroke risk assessment scores

Due to lack of some stroke risk factors in our database, we could only indirectly compare the

performance of the DNN with other stroke risk assessment scores. Table 2 summarizes perfor-

mance of currently available risk assessment scores and the established DNN model in differ-

ent age ranges and gender subgroups. We compared the DNN model with other widely used

stroke and cardiovascular risk assessment scores, including the Framingham,[4,49] QRISK1,

[5] ASSIGN,[50] Reynolds,[51,52] QRISK2,[53] and QRISK3[54] scoring systems. Perfor-

mance of these stroke prediction scores was retrieved from published papers.[4,5,49–54] The

age ranges and gender characteristics of these testing populations are listed. We selected differ-

ent testing populations from our testing datasets according to these gender and age character-

istics to assess the DNN performance. As shown in the table, AUC values of the DNN model

Fig 3. Sensitivity and specificity of the DNN model for predicting 3 year stroke occurrence in different testing time periods under (A) the high specificity

operating point and (B) the high sensitivity operating point.

https://doi.org/10.1371/journal.pone.0213007.g003
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were higher than all of these existing clinical assessment scores. Performance of the DNN

model is nearly identical to the most recently established QRISK3 scoring system. These results

suggest that the DNN model derived from the claim database is quite competitive to those of

currently available risk assessment tools.

Discussion

Main findings

To the best of our knowledge, this population-based cohort study is one of the largest studies

for ischemic stroke prediction in an Asian population. Our results show that a DNN algorithm

can reliably estimate future stroke risk in different age range and gender populations by using

information from the EHR source. Meanwhile, the algorithm achieves comparable and some-

times better performance than current risk assessment tools. This high performing automated

system maintains its stability across several years–strengthening the possibility of real world

clinical adoption of this method.

Automatic stroke risk assessment system

Stroke risk assessment is an important element in disease prevention.[3] Preventive interven-

tions and frequent assessments are needed for those with high stroke risk to mitigate risks of

detrimental events. Several stroke risk assessment scores have been developed for this purpose,

such as the Framingham,[4,49] QRISK,[5] ASSIGN,[50,53,54] and Reynolds[51,52] scoring

systems. Efforts to improve performance of these systems have been extensively studied in

recent decades.[8] The most updated QRISK3[54] score adds several new stroke risk factors

into the former QRISK2 model, including blood pressure variability, additional diseases and

Table 2. Performance of currently available stroke risk assessment scores and the deep learning model.

Characteristics of testing

population a
No. in corresponding population in our testing

datasets

Performance of the DNN model, AUC

(95% CI)

Performance of current

scores, AUC, name of stroke

risk score, published year

age 35–74, women 39,248 0.870 (0.845–0.896) 0.774 Framingham, 1991

[4,5]

0.788 QRISK1, 2007 [5]

0.784 ASSIGN, 2007 [5,50]

0.817 QRISK2, 2008 [53]

age 35–74, men 35,595 0.832 (0.803–0.862) 0.760 Framingham, 1991

[4,5]

0.767 QRISK1, 2007 [5]

0.764 ASSIGN, 2007 [5,50]

0.792 QRISK2, 2008 [53]

age 30–74, women 46,450 0.887 (0.864–0.909) 0.774 Framingham, 2008

[49]

age 30–74, men 41,913 0.853 (0.826–0.879) 0.835 Framingham, 2008

[49]

age >45, women 27,458 0.819 (0.795–0.842) 0.809 Reynolds, 2007 [51]

age >50, men 19,629 0.746 (0.718–0.775) 0.708 Reynolds, 2008 [52]

age 25–84, women 56,929 0.896 (0.877–0.915) 0.880 QRISK3, 2017 [54]

age 25–84, men 51,796 0.870 (0.851–0.890) 0.858 QRISK3, 2017 [54]

a Age ranges and gender characteristics of testing populations in reference papers.

AUC = area under the receiver operating characteristic curve; CI = confidence intervals.

https://doi.org/10.1371/journal.pone.0213007.t002

IDSS for stroke risk assessment

PLOS ONE | https://doi.org/10.1371/journal.pone.0213007 March 13, 2019 9 / 16

https://doi.org/10.1371/journal.pone.0213007.t002
https://doi.org/10.1371/journal.pone.0213007


medications usage information. While the scoring system improves with these changes, the

complexity of implementing such an assessment also increases. While the QRISK3 score can

be easily used in the United Kingdom healthcare system, the implementation in other coun-

tries can still be difficult due to different designs in the recording of electronic health informa-

tion. Moreover, the methods require additional time-consuming measurements beyond those

used in routine clinical care (e.g., blood pressure variability and detailed family history).

Our DNN model, which estimates stroke risk by analyzing only the EHR, shows a competi-

tive performance to the QRISK3 score and superior performance to other risk scores. While

cloud-based health care systems, such as PharmaCloud[55], have been successfully imple-

mented on the National Health Insurance system in Taiwan since 2015, physicians now have

real-time access to patients’ medication and disease diagnosis records in any clinic or hospital

in Taiwan. In addition to avoiding duplicate prescriptions, we may use these EHRs for disease

risk assessment by using this DNN model in the future. The rapid, unobtrusive, and automatic

nature of this predictive model, just like other IDSSs (such as the Stroke Riskometer app[56]),

can easily be applied to the existing healthcare systems. Physicians may therefore spend less

time (within seconds) than other non-automatic tools (few minutes) for disease risk assess-

ment in busy clinics. Meanwhile, the financial cost of such a DNN based IDSS may need fur-

ther evaluation before clinical application.

Validations of the deep learning model

The deep learning method has achieved breakthrough results across a variety of AI tasks in

recent years.[32] Our recent work has shown that DNN can get better performance than sim-

pler machine learning methodologies in analysis of this large-scale EHR. For predicting 5-year

stroke occurrence, the DNN and gradient boosting decision tree approach can result in higher

AUC values than the logistic regression and support vector machine approaches.[34] However,

due to its complexity and unknown efficiency in clinical settings, further analyses are required

to adopt its use as a clinical IDSS.[17] In this work, we validated the DNN model for different

age ranges and gender populations (see Table 2 and S3 Fig). The model achieves higher AUC

values than most risk scores and a competitive result to the most recent QRISK3 score. Addi-

tional issues may arise as clinical interventional strategies and patterns of medication use

change over time. Our study demonstrates, however, that the model can perform well for up

to 5 years after the development data. In this study, not only does the DNN model show high

accuracy, but the clinical applicability is also validated.

Study strengths

There are several strengths of this work. Herein, we demonstrate that DNN can be a promising

method to perform disease prediction tasks. Using this novel data-driven approach to develop

an automated stroke risk assessment system offers several benefits, e.g., rapid risk evaluations,

no additional measurements beyond usual clinical practice, and high accuracy. This IDSS can

automatically use EHR to estimate a patient’s relative stroke risk category within seconds, and

may assist a physician’s clinical decision making for stroke preventive interventions, especially

in a busy clinic. Furthermore, this predictive algorithm maintains flexibility in having multiple

plausible operating points, such that the sensitivity and specificity can be adjusted to match the

clinical requirements. For instance, the high sensitivity operating point can be used to identify

those with very low stroke risk for avoiding unnecessary healthcare expense, and the high spec-

ificity point can be used for improving disease prevention for high risk patients. For another

clinical need, different thresholds for these operating points could be chosen after a detailed

IDSS for stroke risk assessment
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cost-benefit analysis.[57] This single predictive model achieving high performance across a

broad range of ages for both women and men is desirable in real world usage.

Study limitations

There exist some limitations in this study. First, the study database comes from a medical

claim data source. Several important known stroke risk factors, such as family history, choles-

terol levels or smoking habits, are not explicitly recorded. Therefore, we are not able to directly

compare the performance of the DNN on this population with the current clinical risk assess-

ment scores, e.g. the Framingham and QRISK models. Although the AUC value is the most

popular method for assessing risk prediction accuracy, several limitations still exist.[48] How-

ever, owing to the limited data in the research papers of other clinical scores, other methods

(such as sensitivity, specificity, and reclassification table methods[58]) could hardly be applied

for model comparison in this study. Second, although the predictive variables are generated

from claim records, the present study does not account for dosing data of medications. Third,

it is hard to perceive the relationships between variables explicitly.[15] It requires large

amounts of computational power. Many existing analysis approaches and guidelines often use

a linear model, which suffers from loss of predictive power. Some of the variables used in our

model (such as health care cost and utilization) are not traditional stroke risk factors, and it

remains ambiguous what kind of causal clinical variables available in EHRs, if any, we should

consider when constructing models for predicting diseases. Therefore, this model may not

directly provide preventive suggestions as the Framingham or other risk scores would, but it

can serve as an easily and rapidly used IDSS. Fourth, although we used two testing datasets

with no overlapping subjects, the validation process could be further strengthened in a future

prospective study. We did not perform the cross validation process (a method for validating a

machine learning model through generating different combinations of the data) in this study.

Because several sub-sampling experiments in a variety of clinical scenarios were done in this

study, applying the cross validation method would be a huge task and the results are not

expected to change much. Fifth, the primary outcome in the current study was defined as any

ischemic stroke in inpatient records. This may underestimate the occurrence of stroke due to

failure to include patients who died out of hospital because of a very severe condition or those

with less severe stroke who were treated in an outpatient clinic.

Sixth, while randomly under-sampling non-stroke data serves as an important method for

managing the class imbalanced task, this method may make the output predictive probability

much different from the observed disease risk (poor model calibration).[59] Although the

Platt scaling method can improve the calibration of a machine learning model, the Hosmer-

Lemeshow test (a statistical test that measures the differences between observed and predicted

outcomes over the risk groups; if there is not a good agreement, it will show statistically signifi-

cant difference) implied that the DNN model was still not well-calibrated (p-value 0.039) after

applying this process. However, the large sample size of this study may let the Hosmer-Leme-

show test yield false-positive results.[48] On the other hand, although under-sampling pro-

duces poorly calibrated model probability, previous studies have shown that it provides better

predictive discrimination (the ability of a disease predictive model to correctly assign a higher

risk to a patient who is truly at a higher disease risk).[45,48,59] Applying the Platt scaling

method improved the poorly calibrated output probability without altering the model discrim-

ination (AUC value) in this study. Identifying these high risk patients still has clinical benefits

since patients in risk category 5 would have higher risk than patients in other categories at 8

year follow-up. In clinical practical guidelines, patients with high (defined as a 10-year risk 5 to

10%, equivalent to risk category 3 and 4) and very high (a 10-year risk higher than 10%,
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equivalent to risk category 5) cardiovascular risk should receive pharmacological intervention

for disease prevention.[60] Although we got a high negative predictive value, a high false posi-

tive rate was noted due to the fact that our model was applied on a sample representative of the

general population and most people are at very low risk of stroke (positive predictive value at

high specificity point was 1.85%, 6.4 times higher than randomly guessing [0.29%]). Therefore,

this model may serve as a screening rather than a diagnostic IDSS. Finally, potential selection

bias may happen in our study design. Those who did not have any medical contacts in the

study period were not included. Furthermore, the study subjects included mainly Chinese and

feasibility of this algorithm may be largely limited to this population due to some cultural or

behavioral habits. Further study applying this method to other claims databases with different

ethnic populations would be desired.

Conclusions

In this study, our DNN model shows high performance in estimating future risk of ischemic

stroke. Combining the use of DNN and EHR allows a rapid and potentially more precise strati-

fication in identifying those patients with high stroke risk. Further prospective research is nec-

essary to determine the feasibility of applying this algorithm in clinical practice and to see

whether such a DNN based IDSS could improve stroke prevention in the general population.
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